Developmental mechanisms channeling cortical evolution.

نویسندگان

  • Barbara L Finlay
  • Ryutaro Uchiyama
چکیده

Increase in the area and neuron number of the cerebral cortex over evolutionary time systematically changes its computational properties. One of the fundamental developmental mechanisms generating the cortex is a conserved rostrocaudal gradient in duration of neuron production, coupled with distinct asymmetries in the patterns of axon extension and synaptogenesis on the same axis. A small set of conserved sensorimotor areas with well-defined thalamic input anchors the rostrocaudal axis. These core mechanisms organize the cortex into two contrasting topographic zones, while systematically amplifying hierarchical organization on the rostrocaudal axis in larger brains. Recent work has shown that variation in 'cognitive control' in multiple species correlates best with absolute brain size, and this may be the behavioral outcome of this progressive organizational change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evo-devo and constraints on selection.

Developmental bias, or genetic channeling, can influence the tempo and direction of evolution and, thus, become reflected in patterns of biodiversity. Twenty years ago, this notion rested on armchair descriptions of potential constraints on evolution. Now, a broad evo-devo approach involving both evolutionary and developmental genetics provides experimental analysis of such bias, revealing how ...

متن کامل

Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution.

Examination of historical persistence of integration patterns provides an important insight into understanding the origin and evolution of complex traits. Specifically, the distinct effects of developmental and functional integration on the evolution of complex traits are often overlooked. Because patterns of functional integration are commonly shaped by selection exerted by the external enviro...

متن کامل

Cortical plasticity within and across lifetimes: how can development inform us about phenotypic transformations?

The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is ho...

متن کامل

Physical biology of human brain development

Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into ...

متن کامل

The evolution of the neocortex in mammals: how is phenotypic diversity generated?

Evolution of the mammalian neocortex is difficult to examine directly. For this reason, comparative studies and developmental studies are the best way of gaining insight into the evolutionary process. Comparative studies indicate that neocortical evolution is constrained, and that the types of systems-level modifications made to the neocortex are limited. Developmental studies of gene expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trends in neurosciences

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2015